Pendugaan Tingkat Risiko Banjir dengan Menggunakan Extreme Learning Machine dan Extreme Value Theory
نویسندگان
چکیده
Banjir merupakan salah satu permasalahan yang sering terjadi di Indonesia, khususnya Surabaya. baik dalam skala kecil maupun besar membawa dampak negatif bagi lingkungan sekitar. Surabaya kota dengan tingkat banjir tertinggi akibatnya beberapa wilayah terendam cukup dan menghambat aktivitas warga Pada penelitian ini, digunakan data dasarian curah hujan dari stasiun periode waktu Januari 2017 hingga Desember 2021. Pendugaan risiko pada ini menggunakan Value at Risk (VaR) pendekatan Extreme Theory (EVT). Data berupa akan dilakukan pra-pemrosesan mengidentifikasi missing value, observasi pencilan (outlier), tidak sesuai Kemudian karakteristik statistika deskriptif pola sebaran hujan. Setelah didapatkan hujan, peramalan ELM yaitu dibagi menjadi fitur target terlebih dahulu, setelah itu normalisasi data. kemudian training testing untuk proses testing. pengambilan sampel ekstrim metode Peaks Over Threshold Block Maxima. Lalu perhitungan (VaR). Penelitian bertujuan menduga serta menganalisis pengaruh dimiliki antara banjir. Hasil didapat bahwa model terbaik MAPE pengujian sebesar 9,81230 dibawah 10%. hasil ramalan menunjukan bulan Februari 2022. Tingkat dapat dilihat VaR kepercayaan 90%, 95%, 99% GEV secara berturut-turut 143,9767, 145,1391118, 147,1209043 GPD sevcara 334,98, 340,3271661, 354,6074338 sehingga pemerintah membuat kebijakan terkait kapasitas drainase atau penampungan air nilai telah diperoleh.
منابع مشابه
Extreme learning machine: Theory and applications
It is clear that the learning speed of feedforward neural networks is in general far slower than required and it has been a major bottleneck in their applications for past decades. Two key reasons behind may be: (1) the slow gradient-based learning algorithms are extensively used to train neural networks, and (2) all the parameters of the networks are tuned iteratively by using such learning al...
متن کاملExtreme Value Theory
Extreme Value Theory is the branch of statistics that is used to model extreme events. The topic is of interest to meteorologists because much of the recent literature on climate change has focussed on the possibility that extreme events (very high or low temperatures, high precipitation events, droughts, hurricanes etc.) may be changing in parallel with global warming. As a specific example, t...
متن کاملExtreme Learning Machine
Slow speed of feedforward neural networks has been hampering their growth for past decades. Unlike traditional algorithms extreme learning machine (ELM) [5][6] for single hidden layer feedforward network (SLFN) chooses input weight and hidden biases randomly and determines the output weight through linear algebraic manipulations. We propose ELM as an auto associative neural network (AANN) and i...
متن کاملFundamental of Extreme Value Theory
Extreme value theory deals with the stochastic behavior of the extreme values in a process. For a single process, the behavior of the maxima can be described by the three extreme value distributions–Gumbel, Fréchet and negative Weibull–as suggested by Fisher and Tippett (1928). Kotz and Nadarajah (2000) indicated that the extreme value distributions could be traced back to the work done by Bern...
متن کاملEnsembles of extreme learning machine networks for value prediction
Value prediction is an important subproblem of several reinforcement learning (RL) algorithms. In a previous work, it has been shown that the combination of least-squares temporal-difference learning with ELM (extreme learning machine) networks is a powerful method for value prediction in continuous-state problems. This work proposes the use of ensembles to improve the approximation capabilitie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Jurnal Sains dan Seni ITS (e-journal)
سال: 2023
ISSN: ['2337-3520']
DOI: https://doi.org/10.12962/j23373520.v12i1.97672